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Abstract 
 
This thesis extends the protocol component architecture developed for the Innovative 

Active Networking Services (IANS) project to include a language, a syntax checker, 

and a utility for dynamic analysis of interface requirements. The IANS components 

exchange information via a mechanism called Stack Local Packet Memory (SLPM). 

Each component can read or write elements in the SLPM. The tool described here 

ensures that information in the SLP memory is consistent for all paths through the 

protocol stack. A component programmer can use the output of this tool to identify 

problems in his/her specification and implementation and thereby address those issues 

more expeditiously. 
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1 Introduction 

Network protocols overcome many obstacles in order to harness the power of the 

network. These obstacles can take the form of bit-errors in packets, loss of packets, or 

overflow in the network. In Composite Protocols, components are developed to 

hurdle one or more of these obstacles each. Then these components are composed 

together to produce a composite protocol with the combined abilities of the joined 

components. At the University of Kansas, we have researched current models for 

composite protocols in order to define a model that allows components to be designed 

and implemented more quickly while simultaneously helping to increase the 

assurance that the new composite protocols developed from the components will have 

no negative impact on the network.  

 The composite protocol model used at the University of Kansas will be 

reviewed in Chapter One. Chapter Two will address the Interface Requirements of 

Stack Local Packet Memory and cover the definition of the SLPM specification 

language and syntax. The third chapter will introduce the utility for stack SLPM 

usage analysis. Finally, the fourth chapter will present related work and possible 

future work in this area. 

1.1 KU Framework Model 

In striving to define a model for component protocol definition, the goal in mind was 

to help enforce correctness and aid analysis. In order to achieve this, we focused on 
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defining a framework with a relatively simple and consistent composition operator. 

By being simple and consistent, we improve the ability to analyze many 

characteristics of individual components and how they interact as a whole when 

combined to form a composite protocol. After analysis of many composition 

methods, we decided on a linear stacking model that provides serialized event 

processing. Ensemble was chosen as the implementation architecture as it provided a 

linear component stacking approach coupled with a dual-FIFO queue event passing 

structure. Extensions to this architecture include a component model based on 

augmented finite state machines and a memory model. 

1.2 Ensemble 

The Ensemble architecture [6], developed at Cornell University, allows the flexible 

construction of layered group communications protocols. Ensemble was designed for 

creating a variety of distributed applications from a set of reusable components. 

Protocol components in Ensemble are called layers. Stacking these layers on top of 

each other creates composite protocols. Communication between two juxtaposed 

layers, one on top of the other, occurs through the use of two FIFO queues, one to 

pass information from the lower layer up, and the other to pass information from the 

upper layer down.  
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1.3 Component Finite State Machine Model 

The component specifications follow an augmented finite state machine (AFSM) 

model [3, 5] that consists of a finite set of states with a finite set of transitions from 

one state to the next. In these models a transition is triggered by an event and a 

Boolean guard expression. The guard qualifies the transition according to certain 

conditions that can be tested with the component’s accessible memory. In order to be 

selected, a transition must be both triggered by the specific event associated with it, 

and its guard must evaluate to true. Additionally, only one of the guards from the set 

of transitions based on the same event may evaluate to true. Once a transition is 

selected, the transition’s corresponding action function is executed and the local 

memory is updated. Action functions are limited to simple sequences of non-

branching statements through the proper use of guard expressions, synchronous 

transitions and synchronous states. A synchronous transition is one in which no event 

is associated with the transition; it is solely selected by the guard function’s 

evaluation. A synchronous state is one in which there are only synchronous 

transitions to any next state.  

A component consists of two finite state machines. The Transmit State Machine 

(TSM) processes events being sent from the application or component above. 

Similarly, the Receive State Machine (RSM) processes events arriving from the 

network or a lower component. The event processing of these two state machines is 

what defines the actions of the component they represent. 
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One of the main events that state machines process is the packet arrival event. 

This event is based on the packets that get sent through a stack for communication 

purposes with another protocol stack. Each packet event has two different types of 

memory associated with it, packet memory and stack local packet memory. The 

packet memory is sent to the peer of this component in another stack while the stack 

local packet memory can only be read or written to by components within the same 

stack. The action functions associated with this event are what decide a packet’s 

course through each component and through the stack as a whole. 

1.4 Memory Model 

In order to make formal statements about a component, identifying all memory the 

component accesses is essential. Additionally, each memory’s scope must be 

carefully detailed. As long as memory is localized within the boundaries of a 

component, there is a degree of safety as any problems are also localized to the 

component. Extra precaution should be taken with memory that extends outside of the 

component’s domain as these memories interact with other components and entities 

outside of the component. We have identified the following four groups of memory in 

our framework model based on the memory’s accessibility and scope: 

1. Component Local Memory 

2. Packet Memory 

3. Global (external) Memory 

4. Stack Local Packet Memory 
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The following diagram provides a graphic display of each category of memory 

relative to the host node, a protocol stack, and individual components. 

 

 
Figure 1: The different types of protocol memory and their locations within a stack. 

 

1.4.1 Component Local Memory 

Component local memory is internal to and accessible by a single component. This 

memory is accessed only through the action functions from the TSM and RSM of the 

component. This memory is separately instantiated at the sending and receiving hosts. 

If the component is part of a duplex protocol (transmitting information in both 

directions from the sender and receiver), then the TSM and RSM on a single host 

share the same component local memory. 
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The component developer determines the format and content of this memory for 

each protocol component specification. This memory is instantiated with the protocol 

component initialization. If an interface is defined to take initial parameters, a 

component can be tweaked in some ways to a user’s specifications.  All direct access 

to this memory, read and write, is strictly limited to a specific component 

instantiation.  

1.4.2 Packet Memory 

Packet Memory is used to transmit information to a component’s peer in a stack that 

the current stack is communicating with. The component programmer defines this 

memory’s format according to what is necessary to achieve the component’s purpose. 

Some examples are the value of a checksum or a sequence number. The memory is 

accessible in its defined format only for the component and the component’s peers. 

For any component below, all the previous packet memory appears as an array of 

bytes. This expression is permitted to allow components access to the data without 

allowing them to “peek” into specific fields. For example, a checksum component 

could run a checksum algorithm over the bytes or a fragmentation component could 

chunk the data into fragments, but neither would have direct knowledge of the 

information in the fields that previous components wrote. This constraint is applied to 

help keep components individualized with as few direct dependencies on other 

components as possible.  
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Packet memory is instantiated by setting fields in the user defined data structure 

during packet processing and then this structure is sent with the packet. The 

framework determines how this data is converted for transmission, but upon arrival to 

a peer, it is returned to the component’s defined packet memory format and the 

component makes use of it. 

1.4.3 Global (External) Memory 

Regardless of attempts to avoid Global Memory and the dependencies it incurs, some 

protocols need access to this external memory. Global memory contains information 

that is shared among separate protocol stacks on the same host. For example, a node’s 

routing tables are utilized by routing protocols such as RIP or OSPF, IP forwarding 

protocol components, and management and monitoring protocols. This memory has 

an arbitrarily wide scope and extent. The designers of all the protocols that utilize the 

external memory must first agree on its format, access rights, etc. Likewise, any 

modification to this shared memory by one protocol design may require additional 

modifications by any other components utilizing the memory.  

Global memory is outside the extent of the protocols that access it and must be 

instantiated and maintained by the node environment in which the protocols that 

access it execute. This memory must be instantiated on each node in which one or 

more of the memory sharing protocols execute. 

Although we cannot avoid the use of this memory in all cases, there are some 

methods that can help make its use more tractable. The first step is to abstract the 
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access of global memory, reads and writes, through a functional interface. Secondly, 

each component specification must declare all external memory functions it utilizes. 

The second makes explicit the dependencies of a component, and the stack that 

contains the component, on external memory. The first allows definition, 

maintenance, and control of the external memory to be separated from the protocol 

stacks that use it. Through these restrictions we can allow components the access to 

global memory while simultaneously trying to keep the two as independent as 

possible. 

1.4.4 Stack Local Packet Memory 

Stack Local Packet Memory (SLPM) provides a mechanism for components within a 

protocol stack on the same host to share information. The memory is local to the 

stack, but is only accessible when a component has access to the packet to which the 

memory belongs. SLPM travels up or down a stack with a packet event and therefore 

its duration transcends synchronous transitions that are a part of the AFSM model.  

In our architecture, SLPM is structured as an association list of name value pairs. 

The name is a regular string, while the component programmer defines the format of 

the value. Once originally defined, later components utilizing the memory must 

adhere to the same format. This unfortunately results in dependencies among 

components and foreknowledge of at least the format of the value of the SLPM that a 

component needs to use. This memory is instantiated by the use of an SLPM write in 

a component and is utilized by components invoking a read with the SLPM’s name. 
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These accesses occurring in the wrong order can cause several problem issues in a 

stack and therefore should be carefully specified and analyzed to insure proper usage. 
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2 Interface Requirements 

Idealistically, all protocol components are independent of each other and do not need 

direct interaction or knowledge beyond their own peer-to-peer interaction. 

Unfortunately, this ideal is unattainable in many instances for the kind of services we 

wish to provide. In these cases it is necessary to go beyond the knowledge obtainable 

through normal interaction and seek additional knowledge.  

An example of this interaction is a component that tries to provide fragmentation 

for a given stack [16]. At first this seems quite simple, break a large packet into 

several smaller ones. It’s upon delving a little deeper into the specification that the 

intricacies become clearer. What size should the smaller packets be? They should 

only be as large as the network interface is able to handle, so in some way we need to 

determine this information, the maximum transmission unit (MTU). If the designers 

try to get even more sophisticated, they might try to determine the MTU of the path 

from the source to the destination so that one fragmentation is sufficient to transmit a 

packet all the way to the destination. Looking at it in the specific light of composite 

protocols, this component may be stacked on one or more other components. At the 

time of fragmentation, it becomes clear that the MTU alone is insufficient for this 

component to function properly. It also needs to know the maximum header size that 

each component between itself and the sending interface will contribute so that it can 

properly fragment a packet to the correct size. Without this knowledge, this 
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component’s attempt to provide fragmentation may fail horribly because the best it 

could do would be to guess the correct size. This is just one of the many obstacles we 

wish to address through the use of interface requirements. 

An interface requirement is a characteristic of network protocols, but they occur 

because of the necessity for some services to have more knowledge than the basic 

knowledge they are innately provided as components. They must step outside of their 

bounds to access this information or have this information explicitly passed to them. 

We have carefully limited the possible outlets for these requirements to make them 

explicit when they are used in the design of a protocol component. By making them 

explicit, we achieve several results:  

1. The protocol designer can determine if the interaction is necessary or if it is 

possible to manipulate the design to remove the interaction. 

2. If possible, restrict the extent of the interaction. 

3. Recognize that these interactions are most likely where problems will occur, 

and through this realization, better focus design and implementation. 

In our architecture model, we have identified three types of interactions that fall in 

this category: initialization parameters, memory, and control events. Initialization 

parameters allow the application to pass basic one-time information to a component. 

This allows for init-time configuration and is therefore easy to spot, but the 

information is limited, as it cannot be dynamically updated throughout the execution. 

This would be the case of the application giving the fragmentation component a set 

size to fragment to, and the component would thereafter fragment packets to that size 
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regardless of any dynamic changes in the network. Another possible interface, and 

likely the most prevalent, is through memory. We have defined several different 

classes of memory, varying in scope and extent. Any memory access that is not local 

to the component must be accounted for, including but not limited to SLPM and 

global memory, and also the type of access, be it a read or a write. Global memory 

access is further constrained by requiring it to be through a functional interface. The 

last interface is through control events. Control events provide a mechanism for 

components to communicate between, but not among each other.  

An interesting element of interface requirements is that they are not only well 

defined, but also explicitly defined. Because of this nature, it makes them more 

amenable to static code analysis to determine if the requirements are met. A 

straightforward scan could determine if the interaction existed and of what type, init 

parameter, memory read or write, or control event send or receive. When putting 

together a stack, this information could be used to help determine if the interface 

requirements were upheld, a writer for every reader, etc. Determining that a component 

does not have an interface requirement should be fairly complete, “No, this component 

has no reference to an exterior interface.” If it does have a requirement, the answer can 

be a little more devious. If a reader only reads sometimes and a writer only writes 

sometimes, will those times be coordinated correctly? For this type of determination, 

we need more thorough proof. One possible solution, and the approach used in this 

thesis, is to enumerate the state paths in a stack of finite state machine specifications to 

determine if the requirements were actually met for each case.  
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It should be clear that interface requirements are an important characteristic of the 

interaction of protocols. The ability to show when they exist and are satisfied is an 

essential part of the correctness of any stack of components.  

2.1 SLPM as an Interface Requirement  

There are two parts of an SLPM interaction, a reader and a writer. The reader is 

requesting information from the SLP Memory, so it is therefore the source of an 

SLPM requirement. The writer will write information to the SLP Memory. Alone, it 

does nothing more than provide information (although unread information could be a 

sign that the information isn’t needed or that something isn’t quite right in the stack). 

However, in the case of a requirement being in place for the information being 

written, this write would satisfy that requirement. 

A normal transition or a string of synchronous transitions is concluded by the use 

of a packet transfer function. For a regular transition, all SLPM writes that occur 

previous to the packet transfer carry through with the packet event to the next 

component. Synchronous transitions, however, must be mapped to transitions by 

concatenating each synchronous transition on the way to the packet transfer. 

Depending on the branching of the synchronous transitions, each list may result in 

one to several regular transitions. Each possible transition of a packet through a 

component can result in a different group of SLPM written and/or read. Because of 

these different groups, it can’t be flatly stated that a component accesses a certain 

SLPM, although it is true that it does so in some instances. In order to fully qualify 
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the expression, it must be stated that a component accesses a given SLPM in a given 

transition. 

Having a write of a specific SLPM come before a read satisfies the SLPM 

interface requirement. However, determining the chronological relationship between 

a read and a write is a difficult matter. If the TSM only sent packets down the stack, 

and the RSM only sent packets up the stack, a chronological order could be 

determined by having a write occur higher in the stack than the read in the TSM, and 

vice versa for the RSM. As the architecture stands, it is possible for a TSM to send a 

packet up the stack (the forwarding component returning a packet that was sent from 

and to the same host) and a RSM to send a packet down the stack (any component 

that transmits an ACK). Therefore, in order to determine the chronological order of 

SLPM reads and writes, the possible paths a packet can take through a stack must be 

mapped out. By observing each possible complete path of a packet, the chronological 

order can be determined for each path instance and the SLPM interface requirement’s 

satisfaction or failure can be thereby derived.   

The New Packet transfer functions cause some side effects in the satisfaction of 

an SLPM interface requirement. In the case of a peer-to-peer New Packet transfer, a 

new packet may originate from the given component somewhere in the middle of the 

stack. New Packet transfers that follow a previous packet arrival event also generate a 

new packet, but they have access to the old packet as well. Because a new packet is 

created, the previous packet’s path through the system comes to an end and the new 

packet takes up where the old one left off. In these cases, any SLPM that belonged to 
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the old packet is forgotten and the SLPM starts over with the new packet. There are 

two instances that must be addressed for these cases. The first is that some 

components may find the need for the ability to write SLPM to these new packets. 

This cannot be accomplished through an ordinary write because the packet transfer 

function is the last expression to be evaluated in a transition. With a new packet 

transfer, any write made wouldn’t make it to the next component. In order to 

accomplish this desired write, an additional SLPM access function, New Packet 

Write, has been created. New Packet Write achieves the same purpose as a normal 

write on a normal transfer, but is made specifically for a new packet transfer. The 

second case is the instance in which a component needs to use a new packet transfer, 

but doesn’t intend to delete the SLPM from the old packet. To handle this case, the 

SLPM transfer was created. This procedure transfers any previous SLPM from the 

old packet to the SLPM of the newly created packet. 

After this description, it should be clear that there is much more involved in the 

satisfaction of SLPM interface requirements in a stack than having a component that 

writes to the SLPM and having a component that reads from the SLPM in the same 

stack. However, while complicated, the use of SLPM is not beyond analysis. 

2.2 Examples of Stack Local Packet Memory 

Understanding SLPM and its possible uses may be easier by seeing current 

examples of SLPM in components. In the components written to date, the use of 

SLPM has taken on a few repeated forms. The first form is used for supplying 
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information to a component that comes later in a stack from the writing component. 

In the TSM a component higher in the stack provides information for a component 

lower in the stack and vice versa for the RSM. The second form occurs when a 

component is executed in the network and the packets get rerouted back down the 

stack after being received. Some of these components, TTL for example, find it 

necessary to conserve their packet memory from the RSM in order to reuse it for 

transmission in the TSM. In these cases, a write occurs in the RSM to be later read in 

the TSM. The final form is to reduce stack execution and improve efficiency. An 

example of this usage can be seen through the Multicast Forwarding component and 

the Replicator component. The multicast forwarding component has a list of hosts 

that the packet needs to be sent to. If the packet is replicated in this component that is 

near the top of a stack, each resultant packet must be processed by each lower 

component when the packets are actually just copies of the same original packet. To 

reduce this execution overhead, the multicast component writes a list of the hosts 

which the packet must be forwarded to into SLPM and transmits a single packet. Near 

the bottom of the stack, the packet arrives to the replicator component that reads the 

SLPM and sends a copy of the packet to each host in the list. The same packets could 

be sent without the use of SLPM, but this usage allows a stack to be more efficient by 

splitting a component’s functionality into different components and avoiding 

repetitious execution of components between the two. Some examples of SLPM are 

as follows: 
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Incoming Interface – The IP address of the packet’s incoming interface is stored for 

a Reverse Path Forwarding check in a later component. 

Next Hop Address – This is used to set the next hop of the packet and also as the 

packet reaches the wire to know where the packet should be directed next. 

Next Hop Address List – This SLPM is used by multicast components to set a group 

of next hops when a router must forward several copies of the same packet to 

different addresses. 

Packet Destination – This SLPM is used to offset the lack of routing capability in 

components that send acknowledgments. For example, reliable components 

function through the use of ACK’s or NAK’s, however, these components do not 

keep track of to whom they should send the response. They expect this 

information to be handled by the component that does routing. Therefore the 

routing component writes this information to the packet and then later reads it 

from the ACK to know where to send the packet. 

Packet Type – This is used by a component wishing to set the type of the packet to a 

unicast or a multicast. Depending on this setting, the packet is handled differently 

by the stack’s forwarding components. 

Reliable Sequence Number – In most cases, a reliable delivery component would 

not need to use this SLPM reference. However, in the instances of hop-by-hop 

reliability and reliable multicast where the reliable components are placed below 

the forwarding components, this sequence number must be maintained for 

retransmission of the packet. 
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Source Address – Occasionally components will process a packet differently if it 

originated from the same host as the component’s stack. One example is the TTL 

component that sets the TTL to be the max when the packet originates from the 

same host, but reads the previously saved value when the packet originated 

elsewhere. 

 
Figure 2: TTL is a component that writes to SLPM only to be read by itself. 

 
TTL (Time To Live) – The time to live counter is decremented at each hop of a 

packet on its way to the final destination. However, this component must be 

placed below the forwarding component and therefore must save the packet’s 

TTL in SLPM to be processed when the packet is forwarded. When it returns to 

the component, the TTL is read from the SLPM and transferred back to Packet 

Memory. 
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2.3 SLPM Requirement Specification Language 

Modeling SLPM usage in components requires attention to many of the finer details 

of component structure. Each of the following elements plays an important role in 

SLPM usage within a stack and must be represented by the SLPM specification 

language. 

2.3.1 State Machines and Transitions 

Components are made up of finite state machines that respond to incoming packets by 

transitioning to new states and processing each packet accordingly. Each component 

is composed of two state machines. The Transmit State Machine (TSM) handles the 

packets that are received from an upper component while the Receive State Machine 

(RSM) handles the packets received from a lower component. Knowing the current 

state machine is important to determine the set of possible transitions out of the 

current state. It is also important to track in which state machine and transition an 

SLPM access occurs to better pinpoint the source of faults that occur.  

2.3.2 SLPM Accesses 

Access to SLPM can either be through a read or a write. Accesses of different types 

of SLPM are independent of each other. However, the order of reads and writes of the 

same SLPM can cause various issues of which a component programmer should be 

aware.  
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�� Read with no previous Write – This is a failure case likened to attempting to 

utilize an un-instantiated variable and in the least case would cause an exception. 

�� Multiple Reads per Write – In most cases multiple reads aren’t a problem, but the 

user should at least be made aware of the existence of such a case. 

�� Write that was never Read – In this case, a component writes to the SLPM, but no 

other component ever tries to read it. This may be an instance of where a 

component is trying to do more than it should. 

�� Previous Write was Overwritten – Some component wrote to the same SLPM as a 

previous component. This shouldn’t cause a system failure, but an overwritten 

value may be a signal that one component is doing more work than it should or 

that the other may be unexpectedly interfering.  

�� Dirty Reading and Writing – In theses cases, a previously written value has been 

read and then later overwritten. This overwritten value may then be read by an 

even later component. This could cause a problem if the two separately read 

values were supposed to remain the same, however, the components could also be 

purposely reading and writing in pairs. 

An SLPM write can be achieved through either a Write or, in the case of a New 

Packet Transfer, a New Packet Write. Previous SLPM may also be transferred from 

an old packet to a new one in the New Packet Transfers through the use of the special 

access SLPM Transfer. A read is achieved through the Read access. 
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2.3.3 Packet Transfer Functions 

In order to transfer a packet between components, a component has access to various 

transfer functions. These functions determine a packet’s next position in the stack 

relative to its current position. SLPM accesses are associated with the packet transfer 

that shares the transition in which they occur. The packet transfer functions are an 

important part of the SLPM language because they help determine the path of a 

packet through a stack. 

�� Packet Send – The normal transmission function that sends a packet to the next 

lower component, closer to the network wire. 

�� Packet Deliver – The normal delivery function that sends a packet to the next 

higher component, closer to the application utilizing the stack of components. 

�� New Packet Send and Deliver – Special cases of the normal send and deliver 

functions. These functions create a new packet to send in the corresponding 

direction up or down the stack. One example of the need for these functions is 

during fragmentation when several packets must be reconstructed and delivered as 

a completely new packet. Another use occurs when a component sends its peer a 

message after receiving an event other than a packet arrival (a timeout, etc.). 

Because the packets generated are new, they do not contain any SLPM unless a 

special access function, New Packet Write or SLPM Transfer, are also invoked in 

the same transition. 

�� Keep Packet – Saves a packet and its current SLPM for later transfer from the 

component’s same state machine. 
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�� Transmit and Deliver Kept Packet – The corresponding send and deliver functions 

to transfer a packet after it has been saved using Keep Packet. 

�� Drop Packet – Drops a packet on the floor. One of the ends of a packet’s path 

through a stack. A packet that has been dropped is no longer accessible and 

transfers neither up nor down the stack. It is removed from existence. 

2.3.4 SLPM Specification Syntax 

The purpose of the specification syntax is to specify all of the above elements of a 

component and their relationship to each other. Through a structure that specifies 

these elements, it is possible to analyze and determine possible fault points of each 

component in relation to the others in a stack. The table below gives the syntax in 

Backus Naur Form. Examples of several components written in this specification 

syntax can be found in Appendix A.  
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Table 1: SLPM Specification Syntax 

 

 

 
STACK        ::= [ <COMPONENT>+ ] 

 
COMPONENT    ::= ( <NAME> [ <PKT_TRANSFER>+ ] ) 

 
PKT_TRANSFER ::= 
| ((Transmit <TRANS_NUM> <EVENT>?) KeepPkt     [ <SLPMINTERFACE>* ])
  ((Transmit <TRANS_NUM> <EVENT>?) <KEPTPKTFUN>[ <SLPMINTERFACE>* ])
| ((Receive  <TRANS_NUM> <EVENT>?) KeepPkt     [ <SLPMINTERFACE>* ])
  ((Receive  <TRANS_NUM> <EVENT>?) <KEPTPKTFUN>[ <SLPMINTERFACE>* ])
| ((Transmit <TRANS_NUM> <EVENT>?) <TXTFUN>    [ <SLPMINTERFACE>* ])
| ((Receive  <TRANS_NUM> <EVENT>?) <RCVFUN>    [ <SLPMINTERFACE>* ])

 
(* No event defaults to PktArrival *) 
TRANSITION    ::= (<SM> <TRANS_NUM> <EVENT>?) 

 
SM            ::= Transmit | Receive 

 
TRANS_NUM     ::= {1-9}{0–9}* 

 
EVENT         ::= PktArrival | Timeout | Control 

 
TXTFUN        ::= PktSend | NewPktSend | PktDeliver | DropPkt 
 
RCVFUN        ::= PktDeliver | NewPktDeliver | PktSend 
                | NewPktSend | DropPkt 
 
KEPTPKTFUN    ::= DlvrKeptPkt | TxtKeptPkt 

 
 

SLPMINTERFACE ::= ( <ACCESS> <NAME> ) 
                | ( Transfer <WILDCARD> ) 

 
ACCESS        ::= Read | Write | NewPktWrite 

 
WILDCARD      ::= _ 

 
NAME         ::= {a-z | A-Z}{a-z | A-Z | - | _ }* 
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3 Mechanical Validation of SLPM Usage 

The use of finite state machines as the execution method for components makes it 

possible to build a stack with a finite number of paths a packet can take through the 

system. By tracing these paths, we can pinpoint where errors might occur within the 

stack, and, having pinpointed them, can work in a directed manner towards either 

removing these bugs, or showing that the path with the error could not have occurred. 

By using a computer program to automate this process, we can quickly and efficiently 

determine these problem paths and work towards their elimination. 

Start First Second

Return

One Transition

Start First

Second

Second

Two Transitions

Return

Return

Start First Second

Return

One Transition

Start First

Second

Second

Two Transitions

Return

Return
 

Figure 3: The concatenation of synchronous transitions into regular transitions. 

3.1 Component Specification to SLPM Specification 

The first step to analysis begins with the translation from a component specification 

to a SLPM specification. In order to start this process, each transition that calls a 

packet transfer function is determined along with any SLPM accesses that occur 

therein. However, the AFSM’s used in the component specifications provide for 
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special synchronous transitions. These transitions are handled by creating a regular 

transition for each possible permutation of the synchronous transitions that produces a 

different result than the others. The figure above shows a few simple examples of 

how this is achieved. Unfortunately, as the transitions get more complicated, it takes 

more careful analysis to determine how many different transitions are actually 

produced as far as the SLPM is concerned. The figure below gives an example of a 

state machine with a loop that could produce infinitely many different transitions as 

far as states go. However, each group of transitions all have in common the write of 

SLPM A and therefore only the one transition results. The second example shows 

how two different transitions would result if there was also a write in the later half of 

the state machine. Additionally, if a SLPM value is read in a guard to determine the 

correct path to take, each resulting path must include the read of that SLPM as a part 

of their transition. 

Start Write A

PktSend

Write A

Start Write A Write B

PktSend

| Write A 
| Write A & B

Start Write A

PktSend

Write A

Start Write A Write B

PktSend

| Write A 
| Write A & B

 
Figure 4: Transition concatenations that require more careful examination. 

Once the transitions through a component have been determined, each one is recorded 

along with the state machine in which it occurs, the packet transfer function that 

determines the packet’s next destination, and the SLPM accesses that occur previous 
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to the execution of the transfer function. When all of these have been recorded, the 

SLPM specification is complete.  

3.2 Syntax Checking of SLPM Specification 

An additional program has been created to check the syntax of an SLPM specification 

to aid in the writing of these specs. The syntax check is also applied before the 

application of the stack verifier to insure only components written in proper syntax 

are being used. 

3.3 Packet Paths 

Each possible transfer of a packet from one component to another gives a different 

possible path that a packet may travel through the component. Each step of the path 

includes the current component’s name, state machine, transition, event, packet 

transfer function, and any SLPM accesses that occur before the packet transfer is 

called. Through the use of this information, it is clear that some paths through a 

component access certain pieces of SLPM, while others do not. By stacking these 

components together, it can be seen that there are a number of different possible paths 

through the same stack. The paths are based on branching that occurs from each 

packet transfer in the same state machine of a component that the packet entered. 

Some of these paths will be correct, while others may cause unwanted side effects 

that need to be analyzed. Below is an example stack of components with the different 

possible routes through each. Some components will only have one route through 
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them while others will have many. When a packet is dropped, the path is ended and 

the current SLPM is evaluated for warnings. When a packet is turned around, as in 

the forwarding component, the packet goes to the next component above or below, 

but to the opposite state machine.  
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Figure 5: A stack model showing the alternate paths of a packet through a stack. 

The AFSM’s of components define transitions not only through incoming events, but 

also through the use of guards. A guard is a Boolean test that may be based on any 

information available to a component at the point in time it is processing an event. 

Because the only knowledge allowed to the SLPM specification is that of SLP 

Memory, these transitions appear non-deterministic as far as the SLPM is concerned. 
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As a result, each transition that matches the correct event must be searched as a 

possible path through a component. Unfortunately, this can result in paths that are 

invalid. If an invalid path produces no SLPM access faults, this causes no problems. 

However, if one does cause a fault, a warning message is produced with the path in 

question. In order to resolve this invalid fault, one would need to show that this path 

could never occur. This can be occasionally accomplished when the point at which 

the packet goes down the invalid path has a guard based on the SLPM. Otherwise it 

can become more complicated.  

In the figure below are four possible trace paths through the previous stack. The 

first path is from the application sending a packet of data that gets fragmented in the 

fragmentation component. The second path is a packet from the network meant for 

the application that was not fragmented on transmission. The third path is a packet 

received from the network, but not meant for this stack. It is sent back down and out 

the stack to be forwarded to the next hop. The fourth path is from a packet that has 

exceeded its maximum number of hops in the network and is dropped by the TTL 

component.  
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Figure 6: Four possible paths through the previous stack. 

3.4 SLPM Path Validation Algorithm 

The validation of a stack begins exactly where a packet enters the system, at the top 

of a stack for a transmission, at the bottom of a stack for a receipt, or somewhere in 

the middle for a peer-to-peer message originating in a non-packet arrival event like 

timeout. From these points, the initial paths are created as if a single path had entered 

the top component’s TSM, the bottom component’s RSM, and the next component in 

line from the peer-to-peer message. The branching in each path is calculated by 

creating a new path for each possible transition out of the current state machine. The 
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current SLPM interface requirements for each path are then calculated by merging 

any SLPM accesses with the accesses that have already occurred. A path ends if the 

corresponding packet leaves the stack, a packet loop is detected, the packet is 

dropped, or a failure occurs from trying to read a non-written SLPM value. Each path 

is extended until one of the end conditions is met. Once all paths have terminated, the 

warnings and failures that were produced by the stack are displayed according to the 

path in which they occurred. The table below shows events that occur throughout the 

validation and how the program responds to them. 

Table 2: List of events that may occur in a packet path. 

Event 
 

Definition Actions 

Read Miss A component tries to read a SLPM 
value that hasn't been written yet 

1. Flags a failure 
2. Ends the path 

Read Hit A component reads a SLPM value 
that was previously written 

1. Records a successful read 
of the given SLPM 

Multiple Read Hit The SLPM value read has been 
read previously by another 
component 

1. Flags a warning 
2. Records a successful read 

of the value. 
Read Hit – 
Possibly Dirty 

The SLPM value that was read has 
been overwritten, but had been 
read before being overwritten. The 
values may not be the same. 

1. Flags a warning 
2. Records a successful read 

of the value 

Write A component writes a value to a 
SLPM name 

1. Records a successful 
write to the given SLPM 

Overwrite A component writes a value to a 
SLPM name that already had a 
stored value. 

1. Flags a warning 
2. Records a successful 

write to the given SLPM 
Overwrite 
Previously Read 
Value 

A component overwrites a SLPM 
value that was previously written 
and read 

1. Flags a warning 
2. Records a successful 

write to the given SLPM 
Packet Loop 
Detected 

Given the provided transitions 
between components, an infinite 
packet loop occurs in the stack 

1. Flags a failure 
2. Ends the path 
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3.5 Evaluating the Validation Program’s Output 

To aid in understanding how the program can be used, a sample output is given in 

Appendix B for the following stack of components: Forwarding, TTL, Fragmentation, 

Checksum, and Below Bottom. The Below Bottom component is the component that 

attaches the stack to the network wire, and is therefore below the bottom of a stack of 

components. According to the output, this stack of components produces only one 

packet path with a failure and is the first one displayed.  

ttl Read TTL: Read of 'TTL' in ttl without previous Write 

This line states that in the TTL component there was a failure from trying to read the 

TTL SLPM field. Each warning message gives the component in which the warning 

occurred, the access type that was attempted, and the SLPM name that was to be 

accessed. After this, a more detailed message is delivered. In order to determine 

where this failure occurred, we next turn to the path the packet took through the stack. 

  Comp: forward        | Transn: (Transmit, 4, PktArrival)  
 | TFunc: PktSend | SLPM:   (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl            | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend | SLPM:   (Read SrcAddr)(Read TTL) 

 
Here we see that the TSM of the TTL component in transition 2 attempted to read 

both the source address and the TTL SLPM’s, but the TTL value hadn’t yet been 

written by any previous component. By observing the component specification we 

can more clearly understand this error. In the TTL component, the SLPM value 

source address is read first to determine if the packet originated in this stack or is 

coming from another stack (i.e. previously turned around by the forwarding 

component). If the packet does come from this stack, then the max TTL value 
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provided at initialization is set, but if it originated in another stack then the packet has 

been received first and the TTL RSM has written the TTL value to the SLPM. This 

value would then be read by the component and retransmitted. In this case, since the 

packet originated from the same stack and was passed directly from the application to 

the forwarding component to the TTL component, the correct transition, according to 

the guard based on SLPM, is the one that does not attempt to read the TTL value from 

SLPM. Therefore this path would never occur and is invalid. However, if the guard 

statement in the implementation was flawed, this failure might result. Pinpointing this 

possible trouble can help give foresight to the programmer if bugs in the 

implementation do occur. 

The previous path also created a warning, but because we have shown that this 

path is invalid, the warning is also dispelled. The rest of the displayed paths contain 

only warnings, and some of them are just variations of each other. The second path is 

invalid for the same reason as the first, when the packet is coming from being 

received, the second transition in the TTL TSM is called, not the first. In fact, the 

third, fourth, and fifth paths can all be dispelled for the same reason. Paths six 

through nine warn that the TTL and Source Address SLPM’s are written but never 

read. This is ok because in all of these cases the packet is being either dropped in 

forward, or delivered to the application because it is meant for this stack. Paths ten 

through fifteen are each permutations of the same warning to let you know that the 

Source Address SLPM is read more than once. We are already aware of this because 

a read occurs in the TTL component and in the Below Bottom component. If this 
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double read is ok, then these last few warnings are also dispelled. In all, there were 

three distinctly different warnings, but we were able to evaluate and show that they 

either belonged to an invalid path or that they weren’t a serious concern. This stack is 

therefore validated as far as the SLP Memory is concerned. If this information hadn’t 

been known beforehand, this tool would have at least made the user aware of these 

issues, and being aware is an important element of safety. 

3.6 Notes on Design of the Validation Program 

The program utilizes a breadth first search to find all the packet traversal paths with 

failures or warnings. At each step of the search, the completed paths are filtered to 

remove non-problem paths and the remaining paths are stored. Once all of these paths 

are accumulated, they are sorted to order the paths with the most failures first and the 

most warnings second for display. In the example previously given, there were three 

distinct problems identified, however there were fifteen outputs. In order to reduce 

some of these repetitions, an output filter function is provided as an element of the 

stack validator. A second output is provided in Appendix B when the second level of 

filtering was applied. The first two paths fall under the first original problem as 

opposed to five paths, the next path is under the second problem as opposed to four 

paths, and the last path is under the third problem as opposed to 6 paths. This level of 

filtering is still useful for analysis and much easier to read, producing only four paths 

opposed to fifteen paths without filtering. There are three additional levels of filtering 

but should only be used to get an idea of what is happening inside the stack and not 
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for analysis. The first three filters are normal matching filters while the last two also 

filter if a path’s warnings are a subset of another path’s warnings. Because of the 

higher levels of filtering, one warning path represents multiple paths’ warnings. In 

these cases, just because this path is dispelled of one warning doesn’t mean the other 

paths with the other warnings it represents necessarily are. Care should be taken in 

these instances. 

The selection of Ocaml [4, 13] as the programming language was based on a 

number of factors. These include strong list manipulation utilities, pattern matching, 

and higher order functions. Additionally, the Ensemble system and KU model have 

both been written in Ocaml and a utility that will be used with this system can benefit 

by utilizing the same language. Some of the data structures to be represented also 

have their initial design in the language and therefore may be more easily represented 

and manipulated by using the same language. 

The program is more or less a model checker for stacks defined by the SLPM 

specification syntax. There is a question of whether it would have been wiser to 

implement a general-purpose model checker like SPIN to achieve the same purpose. 

The answer in this instance is probably not, but the concepts of process algebra and 

the temporal logic of actions were of vital importance to the program’s creation [9, 

12]. SPIN can easily show a path in which a failure occurred, but it is designed to also 

deal with infinite states where showing one failure is usually good enough. As our 

specification model uses finite state machines, we would like to see all the possible 

failures to be able to examine each instance. In order to utilize a model checker like 
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SPIN, two objectives would have to be achieved. First of all, a generic form of a 

component would have to be created so that each component could be translated into 

the guts of the generic component specification. Secondly, the ability to dispel or 

ignore failures and warnings after they have been initially presented would be 

necessary to determine all of them. The first objective is achievable, but the second 

may prove to be more difficult to achieve dynamically given the constraints of a 

model checker. 

The validation program does have its limitations. Packet loops may occur if a 

component that can deliver a packet from the TSM and a component that can send a 

packet from the RSM are placed in the same stack. Through normal component 

execution these loops may be deterministic and eventually end, however, because of 

the non-deterministic nature of the paths that must be followed by the program, these 

become infinite loops. These loops can be detected, but they cannot be followed for 

the purpose of validating the path. If the loop is supposed to occur in normal 

operation, then this could pose a deficiency in the stack validation. However, 

assuming that a packet looping in a stack is something to be avoided, this would not 

then be a deficiency. Another limitation is that an order for same component accesses 

of the same SLPM is not defined. If a component reads and writes an SLPM that has 

been previously written, this could be interpreted as a read and a possibly dirty write, 

or an overwritten write and a successful read. Because of how state machines can be 

written, the order of the SLPM accesses may be different each time. This could cause 

a failure in the case that a component tried to write and read from the same SLPM 
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without a previous write. Nevertheless, the SLPM shouldn’t be utilized for purposes 

that can be handled through Local Memory and this shouldn’t be an issue. 

3.7 Case Analysis: DVMRP Stack 

In the previous example given, a relatively simple stack is shown to have its SLPM 

interface requirements validated because a stack problem did not exist. A specific 

incident where the SLPM analysis tool has caught a potential stack problem can be 

seen in output trace three of Appendix B. In this multicast routing stack, the DVMRP 

components usually do their own routing and generate their own peer-to-peer packets 

for communication with each other. When they create their own message, they write 

the source address and next hop address into the SLPM in order to direct the packet 

they are sending out. On the other hand, when a packet is coming from a higher 

component, they just pass it along assuming that some other component has already 

written the needed information to SLPM. This works fine if they are used as they are 

intended to be, separate and with no application running on top. However, if a 

component were to be placed above these components that just did a normal send 

without adding the correct SLPM, the packet would never get beyond the 

below_bottom component when it tries to read the SLPM that isn’t there. 

A separate instance highlighted through output three is that the TTL component’s 

SLPM never arrives to be read again in the same component. This occurs because 

there is no component that turns a packet around to be re-routed into the network. 

Because of this, it is clear that the TTL component is taking up processing time, but is 
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never really doing anything in this particular stack. Through this determination, we 

see that the TTL component can actually be removed from this stack, resulting in a 

slightly more efficient protocol stack. The removal of this component, demonstrated 

by output trace four, removes these warning paths from the output while not 

interfering with the reproduction of the problem previously presented due to other 

components. 
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4 Conclusion 

This thesis presents the SLPM component specification syntax and a utility for stack 

SLPM usage validation. Chapter 1 introduces a framework model for composite 

protocols used at the University of Kansas that includes an augmented finite state 

machine based component model and a detailed memory model. This introduction 

presents the framework upon which the utility is applied. Chapter 2 defined Interface 

Requirements and demonstrated the importance of their satisfaction within a stack. 

SLPM is introduced as an interface requirement that must be satisfied in stacks based 

on our framework model. A SLPM specification syntax is defined and some 

components are translated into this syntax in Appendix A. Chapter 3 presented the 

steps in the development of the SLPM stack validation program and explained how to 

use the output to pinpoint possible bugs in a component specification. This chapter 

will discuss similar work that has been done in the area of component protocols, 

summarizes the main results of the work presented in this thesis, and discusses the 

possibilities for future work. 

4.1 Related Work 

The idea of developing protocols from modular components has a long history. In 

fact, basic courses in networking introduce network concepts based on the OSI seven-

layer model and protocols are designed to work with different upper and lower layers. 
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Ensemble [6] is a group communications system designed for constructing a 

variety of distributed applications from a set of re-usable components. It builds upon 

the Horus and Isis systems [15] and is written in Objective Caml (Ocaml) [13] a 

dialect of the functional language ML. Additional work done based on the Horus and 

Ensemble systems makes use of temporal logic to define and prove properties of 

protocol stacks [11]. Although much of the group communication is built-in to the 

system, Ensemble’s model of component composition is very consistent with our 

framework specification’s model. Additionally, being written in a functional language 

like Ocaml helps improve the chances for closer analysis of protocol components 

through the use of theorem provers, like Nuprl, as was done in [7]. 

The X-Kernel [10] is an operating system kernel that provides an architecture for 

constructing, implementing and composing network protocols. The key idea behind 

the X-Kernel architecture is to split the traditional protocol stack, which has a simple 

linear topology and complex per-node functionality, into a complex protocol graph 

consisting of individual protocols called micro-protocols and virtual protocols. 

Cactus [17], based on the previous Coyote system [1, 2, 8], has a two-level model. 

Protocol components, termed microprotocols, are combined together with a runtime 

system to form a composite protocol. A composite protocol is composed with other 

protocols in a normal hierarchical manner (using X-Kernel) to form a network 

subsystem. Although our desired component granularity is similar to that of Cactus, 

its event triggered execution model was not quite what we were looking for as far as 

analysis. However, this same model, written in C, does have potential for multi-
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processing and provided an interesting alternative approach to component 

composition. 

4.2 Results and Future Work 

This thesis has resulted in the production of a syntax checker and a dynamic stack 

analysis tool for SLPM usage. These tools have been used to show that current stacks 

are making proper usage of SLPM, and if not, have helped point out potential misuse. 

In the case of output three in Appendix B, they have even demonstrated that a 

component wasn’t being utilized and, through the removal of said component, 

improved the packet processing efficiency of the stack. 

Future work in this area may extend to the analysis of other stack interface 

requirements, like global memory or control events. Further extensions in the specific 

area of SLPM interface requirements might include a method for automatic 

translation from component specifications to SLPM syntax specifications. The utility 

discussed in this thesis provides a mechanism to analyze a stack’s usage of Stack 

Local Packet Memory, but must be used with component specifications that have 

been written in the SLPM specification syntax. The SLPM specifications in this thesis 

have been translated by hand from previous component specifications. However, 

current component specifications have been written in XML, so there is potential that 

these specifications could be translated directly to the SLPM specification syntax. 

Unfortunately, pitfalls to this translation might develop in a couple of areas. First of 

all, part of the XML specification is direct Ocaml code in the form of helper 
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functions. Helper functions are a good programming practice in most cases, yet in this 

instance they can make translation more difficult by abstracting the access from the 

main body of code. This might be overcome by imposing restrictions on helper 

functions to disallow packet transfers and SLPM access inside the functions. Needed 

values could be read in the main body and passed in as parameters and any packet 

transfers could occur upon the return of the helper function. An alternate issue is that 

names can be “let bound” to values in the Ocaml code. An unintentional let binding 

of a value to a SLPM syntax keyword could also cause conflicts to direct keyword 

parsing since the syntax for Ocaml and the SLPM syntax are independent of each 

other. This may imply the need for a more sophisticated parsing technique. Although 

difficult, an extension in this area is not impossible. This extension would eliminate 

the necessity to create an SLPM component specification by hand because it could be 

achieved at runtime given the original component specification. Additionally, the 

component’s Ocaml code will be automatically generated from the XML 

specifications, so the translation to the SLPM syntax for analysis will also be very 

consistent with the actual implementation. 
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Appendix A: Components in SLPM Specification Syntax 
 
Packet Forwarding Stack Components: 
 
(forward 
  [((Transmit 1) PktDeliver []) 
   ((Transmit 3) DropPkt    []) 
   ((Transmit 4) PktSend    [(Write NextHopAddr) 
                             (Write SrcAddr)]) 
   ((Receive  1) PktDeliver [(Write SrcAddr)]) 
   ((Receive  3) DropPkt    [(Write SrcAddr)]) 
   ((Receive  4) PktSend    [(Write SrcAddr) 
                             (Write NextHopAddr)])]) 
 
(ttl  
  [((Transmit 1) PktSend    [(Read SrcAddr)]) 
   ((Transmit 2) PktSend    [(Read SrcAddr) 
                             (Read TTL)]) 
   ((Receive  1) DropPkt    []) 
   ((Receive  2) PktDeliver [(Write TTL)])])   
 
(fragment 
  [((Transmit 1) PktSend       []) 
   ((Transmit 3) NewPktSend    [(Transfer _)]) 
   ((Receive  2) PktDeliver    []) 
   ((Receive  6) NewPktDeliver [])]) 
 
(checksum 
  [((Transmit 1) PktSend    []) 
   ((Receive  2) PktDeliver []) 
   ((Receive  3) DropPkt    [])]) 
 
 
 (below_bottom 
  [((Transmit 1) PktSend    [(Read NextHopAddr) 
                             (Read SrcAddr)]) 
   ((Receive  1) PktDeliver [])]) 
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Multicast DVMRP Specific Components: 
 
(graft 
  [((Transmit 1) PktSend []) 
   ((Transmit 2 Timeout) NewPktSend [(NewPktWrite SrcAddr) 
                                     (NewPktWrite NextHopAddr)]) 
   ((Receive 1)  DropPkt    []) 
   ((Receive 2)  PktDeliver [])]) 
 
(prune 
  [((Transmit 1) PktSend []) 
   ((Transmit 2 Timeout) NewPktSend [(NewPktWrite SrcAddr) 
                                     (NewPktWrite NextHopAddr)]) 
   ((Receive 1)  DropPkt    []) 
   ((Receive 2)  PktDeliver [])]) 
 
(spanningtree 
  [((Transmit 1) PktSend []) 
   ((Transmit 2 Timeout) NewPktSend [(NewPktWrite SrcAddr) 
                                     (NewPktWrite NextHopAddr)]) 
   ((Receive 1)  DropPkt    []) 
   ((Receive 2)  PktDeliver [])]) 
 
(route_exchange 
  [((Transmit 1) PktSend []) 
   ((Transmit 2 Timeout) NewPktSend [(NewPktWrite SrcAddr) 
                                     (NewPktWrite NextHopAddr)]) 
   ((Receive 1)  DropPkt    []) 
   ((Receive 2)  PktDeliver [])]) 
 
(neighbor_discovery 
  [((Transmit 1) PktSend []) 
   ((Transmit 2 Timeout) NewPktSend [(NewPktWrite SrcAddr) 
                                     (NewPktWrite NextHopAddr)]) 
   ((Receive 1)  DropPkt    []) 
   ((Receive 2)  PktDeliver [])]) 
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Appendix B: Output of the SLPM Stack Verifier  
 

Output 1 – Packet Forwarding Stack All Outputs 
 

for stack filter-level 0: 
 | forward 
 | ttl 
 | fragment 
 | checksum 
 | below_bottom 
 
These SLPM were Accessed: 
 
  NextHopAddr 
    Read - below_bottom 
    Write - forward 
 
  SrcAddr 
    Read - below_bottom | ttl 
    Write - forward 
 
  TTL 
    Read - ttl 
    Write - ttl 
 
  _ 
    Transfer - fragment 
 
Packet Transfer Path 1: 
  Comp: forward        | Transn: (Transmit, 4, PktArrival)  
 | TFunc: PktSend | SLPM:   (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl            | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend | SLPM:   (Read SrcAddr)(Read TTL) 
Failures: 1 
  ttl Read TTL: Read of 'TTL' in ttl without previous Write 
Warnings: 1 
  forward Write NextHopAddr: Path terminated before this Interface 

Requirement was matched 
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Packet Transfer Path 2: 
  Comp: below_bottom     | Transn:(Receive,  1, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: checksum         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: fragment         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: ttl              | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  (Write TTL) 
  Comp: forward          | Transn:(Receive,  4, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl              | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read SrcAddr) 
  Comp: fragment         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: checksum         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: below_bottom     | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 2 
  below_bottom Read  SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
  ttl          Write TTL:     Path terminated before this Interface 

Requirement was matched 
 
Packet Transfer Path 3: 
  Comp: below_bottom     | Transn:(Receive,  1, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: checksum         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: fragment         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: ttl              | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  (Write TTL) 
  Comp: forward          | Transn:(Receive,  4, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl              | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read SrcAddr) 
  Comp: fragment         | Transn:(Transmit, 3, PktArrival)  
 | TFunc: NewPktSend| SLPM:  (Transfer _) 
  Comp: checksum         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: below_bottom     | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 2 
  below_bottom Read  SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
  ttl          Write TTL:     Path terminated before this Interface 

Requirement was matched 
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Packet Transfer Path 4: 
  Comp: below_bottom      | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: NewPktDeliver| SLPM:  
  Comp: ttl               | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr) 
  Comp: fragment          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 2 
  below_bottom Read  SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
  ttl          Write TTL:     Path terminated before this Interface 

Requirement was matched 
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Packet Transfer Path 5: 
  Comp: below_bottom      | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: NewPktDeliver| SLPM:  
  Comp: ttl               | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr) 
  Comp: fragment          | Transn: (Transmit, 3, PktArrival)  
 | TFunc: NewPktSend | SLPM:   (Transfer _) 
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 2 
  below_bottom Read  SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
  ttl          Write TTL:     Path terminated before this Interface 

Requirement was matched 
 
Packet Transfer Path 6: 
  Comp: below_bottom      | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write SrcAddr) 
Failures: 0 
Warnings: 2 
  forward Write SrcAddr: Path terminated before this Interface 

Requirement was matched 
  ttl     Write TTL: Path terminated before this Interface 

Requirement was matched 
 



 48

Packet Transfer Path 7: 
  Comp: below_bottom      | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive, 3, PktArrival)  
 | TFunc: DropPkt    | SLPM:   (Write SrcAddr) 
Failures: 0 
Warnings: 2 
  forward Write SrcAddr: Path terminated before this Interface 

Requirement was matched 
  ttl     Write TTL:     Path terminated before this Interface 

Requirement was matched 
 
Packet Transfer Path 8: 
  Comp: below_bottom             | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver        | SLPM:  
  Comp: checksum                 | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver        | SLPM:  
  Comp: fragment                 | Transn: (Receive, 6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment                 | Transn: (Receive, 6, PktArrival)  
 | TFunc: NewPktDeliver     | SLPM:  
  Comp: ttl                      | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver        | SLPM:   (Write TTL) 
  Comp: forward                  | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver        | SLPM:   (Write SrcAddr) 
Failures: 0 
Warnings: 2 
  forward Write SrcAddr: Path terminated before this Interface 

Requirement was matched 
  ttl     Write TTL:     Path terminated before this Interface 

Requirement was matched 
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Packet Transfer Path 9: 
  Comp: below_bottom             | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver        | SLPM:  
  Comp: checksum                 | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver        | SLPM:  
  Comp: fragment                 | Transn: (Receive, 6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment                 | Transn: (Receive, 6, PktArrival)  
 | TFunc: NewPktDeliver     | SLPM:  
  Comp: ttl                      | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver        | SLPM:   (Write TTL) 
  Comp: forward                  | Transn: (Receive, 3, PktArrival)  
 | TFunc: DropPkt           | SLPM:   (Write SrcAddr) 
Failures: 0 
Warnings: 2 
  forward Write SrcAddr: Path terminated before this Interface 

Requirement was matched 
  ttl     Write TTL:     Path terminated before this Interface 

Requirement was matched 
 
Packet Transfer Path 10: 
  Comp: below_bottom     | Transn:(Receive,  1, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: checksum         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: fragment         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: ttl              | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  (Write TTL) 
  Comp: forward          | Transn:(Receive,  4, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl              | Transn:(Transmit, 2, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read SrcAddr)(Read TTL) 
  Comp: fragment         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: checksum         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: below_bottom     | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
 



 50

Packet Transfer Path 11: 
  Comp: below_bottom     | Transn:(Receive,  1, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: checksum         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: fragment         | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: ttl              | Transn:(Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  (Write TTL) 
  Comp: forward          | Transn:(Receive,  4, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl              | Transn:(Transmit, 2, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read SrcAddr)(Read TTL) 
  Comp: fragment         | Transn:(Transmit, 3, PktArrival)  
 | TFunc: NewPktSend| SLPM:  (Transfer _) 
  Comp: checksum         | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: below_bottom     | Transn:(Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
 
Packet Transfer Path 12: 
  Comp: below_bottom     | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: checksum         | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:  
  Comp: fragment         | Transn: (Receive,  6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment         | Transn: (Receive,  6, PktArrival)  
 | TFunc: NewPktDeliver | SLPM:  
  Comp: ttl              | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver| SLPM:   (Write TTL) 
  Comp: forward          | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend   | SLPM:  (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl              | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend   | SLPM:   (Read SrcAddr)(Read TTL) 
  Comp: fragment         | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: checksum         | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:  
  Comp: below_bottom     | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend   | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
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Packet Transfer Path 13: 
  Comp: below_bottom      | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: pre-NewPktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  6, PktArrival)  
 | TFunc: NewPktDeliver| SLPM:  
  Comp: ttl               | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr)(Read TTL) 
  Comp: fragment          | Transn: (Transmit, 3, PktArrival)  
 | TFunc: NewPktSend | SLPM:   (Transfer _) 
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
 
Packet Transfer Path 14: 
  Comp: forward        | Transn: (Transmit, 4, PktArrival)  
 | TFunc: PktSend | SLPM:   (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl            | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend | SLPM:   (Read SrcAddr) 
  Comp: fragment       | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend | SLPM:  
  Comp: checksum       | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend | SLPM:  
  Comp: below_bottom   | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
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Packet Transfer Path 15: 
  Comp: forward           | Transn: (Transmit, 4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr) 
  Comp: fragment          | Transn: (Transmit, 3, PktArrival)  
 | TFunc: NewPktSend | SLPM:   (Transfer _) 
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
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Output 2 – Packet Forwarding Stack Filtered Outputs 
 
For stack filter-level 2: 
 | forward 
 | ttl 
 | fragment 
 | checksum 
 | below_bottom 
 
These SLPM were Accessed: 
 
  NextHopAddr 
    Read - below_bottom 
    Write - forward 
 
  SrcAddr 
    Read - below_bottom | ttl 
    Write - forward 
 
  TTL 
    Read - ttl 
    Write - ttl 
 
  _ 
    Transfer - fragment 
 
Packet Transfer Path 1: 
  Comp: forward        | Transn: (Transmit, 4, PktArrival)  
 | TFunc: PktSend | SLPM:   (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl            | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend | SLPM:   (Read SrcAddr)(Read TTL) 
Failures: 1 
  ttl Read TTL: Read of 'TTL' in ttl without previous Write 
Warnings: 1 
  forward Write NextHopAddr: Path terminated before this Interface 

Requirement was matched 
 



 54

Packet Transfer Path 2: 
  Comp: below_bottom      | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr) 
  Comp: fragment          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 2 
  below_bottom Read  SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
  ttl          Write TTL:     Path terminated before this Interface 

Requirement was matched 
 
Packet Transfer Path 3: 
  Comp: below_bottom      | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive, 2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive, 1, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write SrcAddr) 
Failures: 0 
Warnings: 2 
  forward Write SrcAddr: Path terminated before this Interface 

Requirement was matched 
  ttl     Write TTL:     Path terminated before this Interface 

Requirement was matched 
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Packet Transfer Path 4: 
  Comp: below_bottom      | Transn: (Receive,  1, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive,  2, PktArrival)  
 | TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: forward           | Transn: (Receive,  4, PktArrival)  
 | TFunc: PktSend    | SLPM: (Write NextHopAddr)(Write SrcAddr) 
  Comp: ttl               | Transn: (Transmit, 2, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read SrcAddr)(Read TTL) 
  Comp: fragment          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
 | TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
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Output 3 – Multicast DVMRP Stack 
 

For stack filter-level 3: 
 | graft 
 | prune 
 | spanningtree 
 | route_exchange 
 | neighbor_discovery 
 | ttl 
 | fragment 
 | checksum 
 | below_bottom 
 
These SLPM were Accessed: 
 
  NextHopAddr 
    Read  - below_bottom 
    NewPktWrite - graft | neighbor_discovery | prune | 
                  route_exchange | spanningtree 
 
  SrcAddr 
    Read  - below_bottom | ttl 
    NewPktWrite - graft | neighbor_discovery | prune |  
                  route_exchange | spanningtree 
 
  TTL 
    Read  - ttl 
    Write - ttl 
 
  _ 
    Transfer - fragment 
 
Packet Transfer Path 1: 
  Comp: graft              | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: prune              | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: spanningtree       | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: route_exchange     | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: neighbor_discovery | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: ttl                | Transn: (Transmit, 2, PktArrival)  

| TFunc: PktSend     | SLPM:   (Read SrcAddr)(Read TTL) 
Failures: 2 
  ttl Read SrcAddr: Read of 'SrcAddr' in ttl without previous Write 
  ttl Read TTL:     Read of 'TTL' in ttl without previous Write 
Warnings: 0 
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Packet Transfer Path 2: 
  Comp: graft             | Transn: (Transmit, 2, Timeout)     

| TFunc: NewPktSend | SLPM:   (NewPktWrite NextHopAddr) 
                              (NewPktWrite SrcAddr) 

  Comp: prune             | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: spanningtree      | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: route_exchange    | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: neighbor_discovery| Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: ttl               | Transn: (Transmit, 2, PktArrival)  
| TFunc: PktSend    | SLPM:   (Read SrcAddr)(Read TTL) 

Failures: 1 
  ttl Read TTL: Read of 'TTL' in ttl without previous Write 
Warnings: 1 
  graft NewPktWrite NextHopAddr: Path terminated before this 

Interface Requirement was matched 
 
Packet Transfer Path 3: 
  Comp: graft              | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: prune              | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: spanningtree       | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: route_exchange     | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: neighbor_discovery | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:  
  Comp: ttl                | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend     | SLPM:   (Read SrcAddr) 
Failures: 1 
  ttl Read SrcAddr: Read of 'SrcAddr' in ttl without previous Write 
Warnings: 0 
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Packet Transfer Path 4: 
  Comp: graft             | Transn: (Transmit, 2, Timeout)     

| TFunc: NewPktSend | SLPM:   (NewPktWrite NextHopAddr) 
                              (NewPktWrite SrcAddr) 

  Comp: prune             | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: spanningtree      | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: route_exchange    | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: neighbor_discovery| Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: ttl               | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:   (Read SrcAddr) 

  Comp: fragment          | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:  

  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  
| TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 

Failures: 0 
Warnings: 1 
  below_bottom Read SrcAddr: 'SrcAddr' has been read previous to 

below_bottom 
 
Packet Transfer Path 5: 
  Comp: below_bottom      | Transn: (Receive, 1, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: checksum          | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: fragment          | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: ttl               | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:   (Write TTL) 
  Comp: neighbor_discovery| Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: route_exchange    | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: spanningtree      | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: prune             | Transn: (Receive, 2, PktArrival)  

| TFunc: PktDeliver | SLPM:  
  Comp: graft             | Transn: (Receive, 1, PktArrival)  

| TFunc: DropPkt    | SLPM:  
Failures: 0 
Warnings: 1 
  ttl Write TTL: Path terminated before this Interface Requirement 

was matched 
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Output 4 – Multicast Stack with TTL Removed 
 
For stack filter-level 3: 
 | graft 
 | prune 
 | spanningtree 
 | route_exchange 
 | neighbor_discovery 
 | fragment 
 | checksum 
 | below_bottom 
 
These SLPM were Accessed: 
 
  NextHopAddr 
    Read - below_bottom 
    NewPktWrite - graft | neighbor_discovery | prune |  
                  route_exchange | spanningtree 
 
  SrcAddr 
    Read - below_bottom 
    NewPktWrite - graft | neighbor_discovery | prune |  
                  route_exchange | spanningtree 
 
  _ 
    Transfer - fragment 
 
Packet Transfer Path 1: 
  Comp: graft             | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: prune             | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: spanningtree      | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: route_exchange    | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: neighbor_discovery| Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: fragment          | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: checksum          | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:  
  Comp: below_bottom      | Transn: (Transmit, 1, PktArrival)  

| TFunc: PktSend    | SLPM:   (Read NextHopAddr)(Read SrcAddr) 
Failures: 2 
  below_bottom Read NextHopAddr: Read of 'NextHopAddr' in 

below_bottom without previous Write 
  below_bottom Read SrcAddr:     Read of 'SrcAddr' in below_bottom 

without previous Write 
Warnings: 0 
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